![]() |
Здравствуйте, гость ( Вход | Регистрация )
![]() |
wiz29 |
![]()
Сообщение
#1
|
![]() Старейший участник ![]() ![]() ![]() ![]() Группа: Участник Сообщений: 600 Регистрация: 7.7.2010 Из: Санкт-Петербург Пользователь №: 1866 Спасибо сказали: 94 раз(а) Репутация: ![]() ![]() ![]() |
Прошу откликнутся тех кто знаком с темой гомографии не понаслышке. Есть пару вопросов касающихся получения парметров изображения (исходного).
|
|
|
![]() |
Iron Bug |
![]()
Сообщение
#2
|
![]() Профессионал ![]() ![]() ![]() ![]() ![]() Группа: Модератор Сообщений: 1611 Регистрация: 6.2.2009 Из: Yekaterinburg Пользователь №: 533 Спасибо сказали: 219 раз(а) Репутация: ![]() ![]() ![]() |
ну вот это и есть то, о чём я написала, только очень сумбурно изложенное
![]() там нормальное трёхмерное евклидово пространство и две плоскости. и именно поэтому матрицы преобразования выходят 3x3. просто это частный случай с одной плоскостью, задаваемой уравнением z=0. но преобразование останется трёхмерным, как ни крути. неважно, в каких координатах - ибо там три степени свободы. и для описания преобразования там явно не требуется четырёх векторов, ибо плоскость однозначно определяется невырожденной системой из трёх точек. система из четырёх уравнений для трёх координат, в общем виде, будет избыточной, либо нерешаемой. тут действительно сначала надо разобраться с сутью проблемы. а так, рекомендую всё же присмотреться к OpenGL: там есть большинство готовых функций для выполнения подобных операций. именно для этой задачи его и создавали и он для ускорения выполнения операций использует векторные возможности процессора видеокарты, как правило. |
|
|
wiz29 |
![]()
Сообщение
#3
|
![]() Старейший участник ![]() ![]() ![]() ![]() Группа: Участник Сообщений: 600 Регистрация: 7.7.2010 Из: Санкт-Петербург Пользователь №: 1866 Спасибо сказали: 94 раз(а) Репутация: ![]() ![]() ![]() |
ну вот это и есть то, о чём я написала, только очень сумбурно изложенное ![]() там нормальное трёхмерное евклидово пространство и две плоскости. и именно поэтому матрицы преобразования выходят 3x3. просто это частный случай с одной плоскостью, задаваемой уравнением z=0. но преобразование останется трёхмерным, как ни крути. неважно, в каких координатах - ибо там три степени свободы. и для описания преобразования там явно не требуется четырёх векторов, ибо плоскость однозначно определяется невырожденной системой из трёх точек. система из четырёх уравнений для трёх координат, в общем виде, будет избыточной, либо нерешаемой. тут действительно сначала надо разобраться с сутью проблемы. а так, рекомендую всё же присмотреться к OpenGL: там есть большинство готовых функций для выполнения подобных операций. именно для этой задачи его и создавали и он для ускорения выполнения операций использует векторные возможности процессора видеокарты, как правило. попробуте решить задачу гомографии с 3мя точками, без каких-либо ограничений... Если у вас это получится думаю вам дадут премию в области математики ![]() |
|
|
![]() ![]() ![]() |
![]() |
|
Текстовая версия | Сейчас: 11.4.2025, 15:15 |