Численные методы +Qt, Под Qt |
Здравствуйте, гость ( Вход | Регистрация )
Численные методы +Qt, Под Qt |
QMainWindow |
5.11.2010, 13:35
Сообщение
#1
|
Участник Группа: Участник Сообщений: 198 Регистрация: 1.8.2010 Пользователь №: 1922 Спасибо сказали: 0 раз(а) Репутация: 0 |
Добрый день!
Подскажите, пожалуйста, какие-нибудь библиотеки (или классы) для работы с численными методами (в данном случае требуется решить дифф. уравнение). Может быть и на Qt чего уже сделали. Можно, конечно, и самому алгоритм сделать, но хотелось бы уже готовый и оптимизированный. Заранее спасибо!)) |
|
|
DEADHUNT |
5.11.2010, 20:19
Сообщение
#2
|
Активный участник Группа: Участник Сообщений: 430 Регистрация: 15.4.2009 Пользователь №: 686 Спасибо сказали: 26 раз(а) Репутация: 2 |
вот как то проводил эксперимент, какой метод решает задачу Коши первого порядка с наименьшей погрешностью:
Раскрывающийся текст
в исходнике реализованы следующие методы: метод эйлера(фактически интегрирование уравнения методом левых прямоугольников) - погрешность O(h) интегрирование уравнения методов центральных прямоугольников - погрешность O(h^2) интегрирование уравнения методов симпсона - погрешность O(h^4) метод рунге-кутта 4 порядка - погрешность O(h^4) странно но почему то на моих примерах точнее всего считает метод эйлера. |
|
|
Текстовая версия | Сейчас: 15.1.2025, 19:50 |